
ME 7247: Advanced Control Systems Fall 2022–23

Lecture 23: risk-sensitive control
Tuesday, Dec 02, 2022

Lecturer: Laurent Lessard Scribe: Chang Wang

In this lecture, we cover risk-sensitive control, which is a similar to stochastic LQR, but the nature
of the disturbance will be changed. We start by reformulating the LQR problem slightly differently.
Write the system dynamics by including an output zt:

xt+1 = Axt +But + wt,

zt = Fxt +Hut,

The goal is to

minimize
u0,u1,...

∞∑
t=0

∥zt∥2 (1)

To recover the LQR case, we can simply pick

F =

[
Q1/2

0

]
, H =

[
0

R1/2

]
(2)

1 Risk-sensitive Control

Even when we use the optimal LQR gain, running the system for a finite time will incur different costs
every time due to the random disturbances wt. In other words, the cost J is a random variable. The
LQR problem was to find the K that minimizes E(J), the expected cost. However, there are cases
where the cost may have a large variance, and we would rather use a more conservative strategy
that may be worse on average, but whose worst-case is not as bad. This is called risk-sensitive
control. Another way to think about it is that we imagine the noise wt as not being random, but
rather being slightly biased or adversarial, such that we pick a strategy that anticipates some level
of unluckiness.

1.1 First approach: soft-constrained minimax

There are several ways to achieve a more robust controller. We will show two of them. The first
one is to change the problem into a deterministic problem. In this problem, the w is not going to
be a random noise anymore, but will be chosen by an adversary who is trying to maximize the cost
rather than minimize it. We cannot give our adversary full freedom, however, otherwise they could
make the cost +∞. Therefore, we use a soft-constrained formulation, which is a way of limiting our
adversary’s power. Here is the optimization problem.

1



minimize
u0:N−1

maximize
w0:N−1

N−1∑
t=0

(
∥zt∥2 − γ2∥wt∥2

)
s.t. xt+1 = Axt +But + wt

zt = Fxt +Hut

(3)

If γ = 0, we recover the standard LQR cost, which means our adversary could just make the noise
wt infinitely large and the inner maximization would be +∞. However, if γ is large, the adversary’s
power will be limited and it will become more difficult for the adversary to sabotage us. As γ → ∞,
the noise is so heavily penalized that the best option for the adversary is to pick wt = 0, which
recovers the standard deterministic LQR problem.

1.2 Second approach: linear exponential regulator

Another way to model risk aversion is to change our cost such that larger costs are more greatly
penalized. Let C be the standard LQR cost:

C =

N−1∑
t=0

∥zt∥2

Recall that when wt is random noise (say, Gaussian), C is a random variable. The standard
stochastic LQR setting optimizes the average quadratic cost E(C). However, if we want to place a
greater penalty on large values of C, we can replace the cost by

E(f(C))

where f(x) is a function that increases faster than x. This ensures that values of C that are larger
than average are penalized more than values of C that are below average. One way to achieve
this is to make f an exponential function. This leads to the linear exponential quadratic regulator
(LEQR)

J = γ2 logE(e
1
γ2

C
) (4)

Note that the γ2 log does not change the optimal policy (it’s just makes the algebra simpler). Also
note that we can’t interchange the order of the expected value an the exponential. When γ is
smaller, the exponential curve has a steeper growth (larger penalty on large C).

To interpret what the LEQR model does, consider a Taylor approximation. Using the fact that

exp(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + · · ·

log(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · ·

2



we can write Eq. (4) as

γ2 logE(e
1
γ2

C
) = γ2 logE

[
1 +

1

γ2
C +

1

2γ2
C2 + · · ·

]
= γ2 log

[
1 +

1

γ2
E(C) +

1

2γ2
E(C2) + · · ·

]
= γ2

[(
1

γ2
E(C) +

1

2γ2
E(C2) + · · ·

)
− 1

2

(
1

γ2
E(C) +

1

2γ2
E(C2) + · · ·

)2

+ · · ·
]

= E(C)︸ ︷︷ ︸
LQR cost

+
1

2γ2
(
E(C2)−E(C)2

)︸ ︷︷ ︸
Var(C)

+
1

γ4
(. . . )

So roughly, the LEQR objective function is a trade-off between E(C) (the mean cost) and Var(C)
(the variance of the cost). This Taylor approximation is valid when γ is large (so 1/γ is small).
As we make γ smaller, we place more weight on the variance of the cost, which causes the optimal
strategy to be more conservative and risk-averse.

Comparison of both approaches. Amazingly, the soft-constrained minimax formulation and
the LEQR formulation yield the exact same optimal policy. This is not obvious! In these notes, we
will only derive the solution to the soft-constrained minimax problem using a dynamic programming
approach. The LEQR problem can also be solved using dynamic programming.

To solve the minimax problem, we would like to use dynamic programming and employ the same
technique as we did with deterministic LQR, but this would require replacing the minimization and
maximization in Eq. (3) by an alternating version that looks like:

min
u0

max
w0

min
u1

max
w1

· · · min
uN−1

max
wN−1

In general, this is not allowed. One cannot simply swap the order of minimization and maximization
unless certain specific conditions are met. We will take a detour to study what these conditions are
and then return to solving this minimax problem.

2 von Neumann’s minimax theorem

Theorem. If f(x, y) is convex in x (for all y) and concave in y (for all x), then

min
x

max
y

f(x, y) = max
y

min
x

f(x, y)

An example of a function that satisfies this requirement is f(x, y) = x2 − y2. When graphed, this
function has a saddle point at (0, 0).

Proof. Firstly, we start by proving that minx maxy f(x, y) ≥ maxy minx f(x, y). Start with

max
y

f(x, y) ≥ f(x, y) ≥ min
x

f(x, y) for all x, y.

3



Therefore we have
max
y

f(x, y)︸ ︷︷ ︸
function of x only

≥ min
x

f(x, y)︸ ︷︷ ︸
function of y only

for all x, y.

Since each side is a function of a different variable, we can minimize the left-hand side with respect to
x and maximize the right-hand side with respect to y and the inequality will still be true. Therefore,

min
x

max
y

f(x, y) ≥ max
y

min
x

f(x, y) (5)

as required. Now, we prove the more difficult direction of the inequality. We start by converting
the problem into epigraph form.

min
x

max
y

f(x, y) = min
x,t

t

s.t. max
y

f(x, y) ≤ t

= min
x,t

t

s.t. f(x, y) ≤ t for all y

This doesn’t seems like progress because we started with an unconstrained optimization problem
and now we have a problem with an extra variable and infinitely many constraints... But stay with
it, it will get better!

First, observe that the optimization problem is convex, since f is convex in x and therefore each
constraint is a convex constraint in (x, t). Moreover, the problem is strictly feasible, since we can
always pick a larger t in order to make each inequality strict. Therefore, by Slater’s constraint
qualification, the problem must exhibit strong duality.

Now compute the dual. Since there is a constraint for every y, there must be a dual variable for
every y. In other words, the set of dual variables can be viewed as a function λ(y). Let λ(y) be the
dual variable for the constraint f(x, y) ≤ t. Now compute the dual function, optimizing over t first.

F (λ) = min
x,t

(
t+

∫
λ(y)(f(x, y)− t)dy

)
= min

x,t
t

[
1−

∫
λ(y)dy

]
+

∫
λ(y)f(x, y) dy

=

{
minx

∫
λ(y)f(x, y)dy if

∫
λ(y) dy = 1

−∞ otherwise

(6)

4



Therefore, strong duality tells us that

min
x

max
y

f(x, y) = max
λ

F (λ)

s.t. λ(y) ≥ 0 for all y

max
λ

min
x

∫
λ(y)f(x, y) dy

s.t.
∫

λ(y) dy = 1

λ(y) ≥ 0 for all y
max
λ

min
x

Ey∼λf(x, y)

s.t. λ is a probability density

(7)

In the last step, we used the fact that λ is everywhere nonnegative and it integrates to 1. Therefore
λ is a probability distribution! We therefore interpret y as being a random vector with probability
density function λ. The notation Ey∼λ(. . . ) means that we are taking the expected value with
respect to y, which is distributed according to the density function λ.

We will now use the fact that f(x, y) is a concave function of y. Recall that a concave function
h : Rn → R satisfies the following inequality by definition:

αh(x) + (1− α)h(y) ≤ h(αx+ (1− α)y) for all x, y ∈ Rn and α ∈ [0, 1].

A similar inequality holds when we have m points. If h : Rn → R is a concave function, then
m∑
i=1

αih(xi) ≤ h

(
m∑
i=1

αixi

)
for all xi ∈ Rn and αi ≥ 0 satisfying

m∑
i=1

αi = 1.

It even holds when we have infinitely many points, which yields Jensen’s inequality. If h : Rn → R
is a concave function, then∫

p(x)h(x) dx ≤ h

(∫
xp(x) dx

)
for any probability distribution p.

We can write this even more compactly as follows. If h : Rn → R is a concave function, and x ∈ Rn

is a random vector, we have:
Eh(x) ≤ h(Ex)

By applying Jensen’s Inequality, we obtain

min
x

max
y

f(x, y) = max
λ

min
x

Ey∼λf(x, y)

s.t. λ is a probability density
≤ max

λ
min
x

f(x,Ey∼λy)

s.t. λ is a probability density
= max

ȳ
min
x

f(x, ȳ) (8)

In the last step, we used the fact that the optimization problem only depends on λ through the
expected value of y, so it is equivalent to simply optimize over ȳ := Ey∼λy.

Now combining (5) and (8), we obtain the desired result. ■

5



3 Dynamic programming for risk-sensitive control

Now that we have proven the minimax theorem, we can solve the soft-constrained problem via
dynamic programming by alternating minimization and maximization. The only catch is that our
cost function must be convex in the ut (the variables we are minimizing over) and concave in the
wt (the variables we are maximizing over). Since everything is quadratic and linear, we can use a
quadratic value function Vt(x) = xTPtxt as in the LQR case. Our dynamic programming recursion
becomes

Vt(x) = min
u

max
w

(
xTQx+ uTRu− γ2∥w∥2 + (Ax+Bu+ w)TPt+1(Ax+Bu+ w)

)
(9)

Collecting the ∥w∥2 terms, we obtain wT(Pt+1 − γ2I)w. This is a concave function whenever
Pt+1 ≺ γ2I. So we must check that this remains true at every step of the recursion. After maximizing
over w and doing some simplifications, we obtain

Vt(x) = min
u

(
xTQx+ uTRu+ (Ax+Bu)T

(
P−1
t+1 − γ−2I

)−1
(Ax+Bu)

)
(10)

Make the change of variables: P̃t+1 :=
(
P−1
t+1 − γ−2I

)−1. Note that P̃t+1 ≻ 0 by our previous
concavity assumption. Then, (9) becomes exactly the same as the LQR dynamic recursion, except
with P̃ rather that P on the right-hand side. Solving it, we obtain:

PN = Qf

P̃t+1 =
(
P−1
t+1 − γ−2I

)−1 for t = 0, . . . , N − 1

Pt = ATP̃t+1A+Q−ATP̃t+1B(BTP̃t+1B +R)−1BTP̃t+1A for t = 0, . . . , N − 1

Kt = −(BTP̃t+1B +R)−1BTP̃t+1A for t = 0, . . . , N − 1

(11)

And just as with LQR, the optimal policy is ut = Ktxt.

Note. If γ → ∞, we have P̃ → P so we recover the standard LQR solution. But if γ is too small,
Pt+1 ≺ γ2I will no longer hold. We can view γ as our level of risk aversion. The smaller we make γ,
the more paranoid we become, until eventually we are unable to make any decision at all because
we think our adversary is too powerful.

6


	Risk-sensitive Control
	First approach: soft-constrained minimax
	Second approach: linear exponential regulator

	von Neumann's minimax theorem
	Dynamic programming for risk-sensitive control

